
Sets, Bags, Graphs
Anton Gerdelan <gerdela@scss.tcd.ie>

mailto:gerdela@scss.tcd.ie

Sets and Bags (ADTs)
• Mirrors finite set theory from mathematics

• usually mutable sets - allow deletion/insertion in
set

• A set is a collection of unique items. Position in set
is not important, except for display.

• Rather than return an element from a set

Set Operations
• insert(item) - fail if item is already in set

• delete(item)

• test_for(item) - return true if item is in set

• union() - combine 2 sets, return new set (OR)

• intersection() - returns a new set (AND)

Set Operations
• If set C contains { 6, 12, 9, 1 }  

and set D contains { 3, 6, 1, 5 }

• then set E = C union D  
contains {1, 3, 5, 6, 9, 12 } - no duplicates

• and set F = C intersection D contains { 1, 6 }

• A bag is a set that can contain duplicates

• B = { 3, 1, 22, 22, 3 } or

• B = { 3(2), 1(1), 22(2) }

Set/bag Implementation
• Arrays or linked lists or…

• bit-vectors (sets only) - but very fast

• e.g. 32-bit integer can hold values 0 to 31 (or e.g. months of year) 
 
0000 0000 0000 0000 0000 0000 0000 0001  
this set holds { 0 } 
(note that in binary/hexedit this order is reversed)

• Union is just E = C | D

• Intersection is just E =C & D

• To insert an item, set its bit: E = E | (1<<n)

Graph ADT
• set of vertices (nodes)

• set of edges (like branches)

• similar to tree but

• can contain cycles

• travel in any direction along
edges

• except in directed graph

A

B C

edge

vertex
v = {A, B, C} 

e = {(B,C), (C,A), (A,B)}
A

B C

Graphs
• edges can have weights

• represent cost or quantity of
link

• (or labels / words)

• Q. what type of problems can
we model with a graph?

• what do the weights
represent?

A

B C

2

4

7

Paths
• Two vertices are adjacent if an edge

links them directly

• A path between 2 vertices moves
along a sequence of edges

• A-B-A-D-C is a path

• Path length is the sum of weights on
the path

• A-B-A-D-C has length 17

• A cycle is a path with length > 0 from
a vertex to itself

• A-D-C-A is a cycle

A B

C D

1

1
5

11

103 4

Paths
• A connected graph has a path

from every vertex to every other
vertex

• vertices don't need to be
directly adjacent

• An acyclic graph has no cycles.
Cyclic has 1+

A

B C

27

Some Graph Operations
• insert_vertex() // insert new node into set of nodes

• insert_edge() // insert new edge into set of edges

• bool is_adjacent(vertex from, vertex to) // true if an edge
from a to b exists

• int weight(vertex a, vertex b) // return weight of edge
between a and b

• int num_nodes()

• int num_edges()

• remove_node() // remove nodes and any isolated edges

• remove_edge() // without removing nodes

• edit_edge() // alter weight or direction

Other Graph Operations

• find_path(vertex a, vertex b)

• find_shortest_path(vertex a, vertex b)

• …

Graph Implementation

• Two sets - could use sets to implement graphs

• G = { Nodes, Edges }

• Nodes = { A, C, D, B }

• Edges = { (A, B, 1), (B, A, 1), (D, B, 5), (C, A, 3),
(A, D, 4), (D, C, 11), (D, A, 10) }

Graph Implementation
• Usually more convenient to

represent with matrices 
(sparse matrix - zero means "no
edge")

• Or linked lists - an adjacency list

A B C D

A -1 1 0 4

B 1 -1 0 0

C 3 0 -1 0

D 10 5 11 -1

start 
node

end node

A

B

C

D

B 1

A 1

A 3

A 10

D 4

B 5 C 1

matrix of edge weights

